

Journal of Organometallic Chemistry 564 (1998) 215-226

Organotin compounds containing a bulky (Me₃Si)₃C or related ligand. Crystal structures of {(Me₃Si)₃CMe(O₂NO)Sn}₂O, (PhMe₂Si)₃CSnMeCl₂ and (PhMe₂Si)₃CSnCl₃

Salih S. Al-Juaid, Mustafa Al-Rawi, Colin Eaborn, Peter B. Hitchcock, J. David Smith *

School of Chemistry, Physics and Environmental Science, University of Sussex, Brighton BN1 9QJ, UK

Received 20 March 1998

Abstract

Some compounds having very bulky ligands, mainly $(Me_3Si)_3C$ (denoted by Tsi) or $(PhMe_2Si)_3C$ (denoted by Tpsi), attached to functional tin centres have been studied. Treatment of TsiSnR_2Cl, R = Me or Ph, with one equivalent of ICl gave the corresponding chloride TsiSnRCl₂, and use of an excess of ICl gave TsiSnCl₃ in both cases. Reaction of either chloride with one equivalent of Br₂ gave the dibromide TsiSnRBr₂; when an excess of Br₂ was used TsiSnMe₂Cl still gave the dibromide but TsiSiPh₂Cl gave the tribromide TsiSnBr₃. Reaction of TsiSnMe₂Br with AgSCN or Ag₂O gave TsiSnMe₂NCS and (TsiSnMe₂)₂O, respectively, but when the crude product from the reaction of TsiSnMeBr₂ with AgNO₃ was recrystallized from MeOH the nitrato-oxide {TsiMe(O₂NO)Sn}₂O was obtained. In a seemingly previously unreported type of reaction, the alkoxide TsiSnMe₂OEt reacted with ICl, Br₂, or I₂ to give TsiSnMecl₂ gave the hydrides TsiSnMe₂H and TsiSnMeH₂ on treatment with LiAlH₄, but in the case of TpsiSnMe₂Cl and TsiSnMeCl₂ gave the hydrides TsiSnMe₂H and TsiSnMeH₂ on treatment with diffuoride (Me₃Si)₂C(SnMe₂Ph)(SiMe₂Cl) reacted with a 1 M proportion of AgBF₄ in CH₂Cl₂ with cleavage of the Sn-Ph bond to give the diffuoride (Me₃Si)₂C(SnMe₂F)(SiMe₂F). The crystal structures of the monomeric compounds {TsiMe(O₂NO)Sn}₂O, TpsiSnMeCl₂ and TpsiSnCl₃ are reported; {TsiMe(O₂NO)Sn}₂O provides the first example of unidentate bonding of an NO₃ group to four-coordinate tin. © 1998 Elsevier Science S.A. All rights reserved.

Keywords: Crystal structure; Silicon; Tin; Trisyl; Tris(trimethylsilyl)methyl; Tris(dimethylphenylsilyl)methyl

1. Introduction

There have been many fruitful studies of compounds in which the very bulky (Me₃Si)C or a related ligand is attached to a functional silicon centre but only a few, and mainly rather limited, analogous studies of compounds containing a functional tin centre [1–7]. In an extension of earlier reports [5–7] we now describe the preparation and reactions of some new tin derivatives, mainly bearing the ligand (Me₃Si)₃C (denoted by Tsi) or (PhMe₂Si)₃C (denoted by Tpsi), and present the crystal structures of {TsiMe(O₂NO)Sn}₂O **1**, TpsiSn-MeCl₂ **2** and TpsiSnCl₃ **3**.

* Corresponding author. Tel.: +44 1 273 678124; fax: +44 1 273 677196.

 $Tsi = (Me_3Si)_3C Tpsi = (PhMe_2Si)_3C$ $\{TsiMe(O_2NO)Sn\}_2O 1 TpsiSnMeCl_2 2$ $TpsiSnCl_3 3.$

2. Results and discussion

2.1. Preparation of organotin halides and their reactions with ICl, Br_2 or I_2

The trichloride TpsiSnCl₃ was obtained from TpsiLi and SnCl₄ but it was accompanied by a substantial amount of TpsiCl. Treatment of TsiSnMe₂Cl or Tsi-SnPh₂Cl with a 1 M proportion of ICl in CH₂Cl₂ for (2)

30 min at room temperature gave the corresponding dichloride in good yield (Eq. (1)) and when an excess of ICl was used the trichloride was obtained (Eq. (2)).

$$TsiSnR_2Cl + ICl (1 equiv.)$$

$$\rightarrow TsiSnRCl_2 (R = Me \text{ or } Ph)$$
(1)

$$TsiSnR_2Cl + ICl (excess) \rightarrow TsiSnCl_3 (R = Me \text{ or } Ph)$$

The analogous reaction of $TsiSnMe_2Cl$ or $TsiSnPh_2Cl$ with a 1 M proportion of Br_2 gave the dibromide in each case (Eq. (3)); we suggest that the initial reaction is to give the monobromide $TsiSnR_2Br$ and BrCl and that the latter then cleaves an Sn–R bond.

$$TsiSnR_2Cl + Br_2$$
 (1 equiv.)

$$\rightarrow TsiSnRBr_2 (R = Me \text{ or } Ph)$$
(3)

When an excess of Br_2 was used, $TsiSnMe_2Cl$ still gave only the dibromide, indicating that Br_2 is less reactive than ICl in cleavage of the Sn–Me bond, but $TsiSnPh_2Cl$ gave the tribromide $TsiSnBr_3$, reflecting the higher reactivity of the Sn–Ph bond towards electrophiles.

No reaction occurred between $TsiSnMe_2Cl$ and I_2 in CCl_4 for 18 h at room temperature or 4 h under reflux, or between $TsiSnPh_2Cl$ and I_2 in CH_2Cl_2 for 18 h at room temperature.

2.2. Reactions with silver salts

Treatment of TsiSnCl₃ with an excess of AgBF₄ in CH₂Cl₂ gave the expected trifluoride TsiSnF₃ in high yield, and reaction of TpsiSnMe₂Cl with AgNO₃ gave the expected nitrate TpsiSnMe₂ONO₂. The chloride TpsiSnMe₂Cl did not react with AgSCN in acetone during 48 h at room temperature, but when the bromide TpsiSnMe₂Br was used formation of the isothio-cyanate TsiSnMe₂NCS was complete within 1 h (Eq. (4)) [7]. Reaction of the bromide with Ag₂O in CH₂Cl₂ for 24 h at room temperature gave the oxide in good yield (Eq. (5)).

 $TpsiSnMe_2Br + AgSCN \rightarrow TpsiSnMe_2NCS$ (4)

$$TpsiSnMe_2Br + Ag_2O \rightarrow (TpsiSnMe_2)_2O$$
 (5)

An unexpected outcome was observed when the product of the reaction of the dibromide $TsiSnMeBr_2$ with $AgNO_3$ was, without isolation, recrystallized from MeOH, the compound obtained, in 87% yield, being the nitrato-oxide $\{Tsi(Me)(O_2NO)Sn\}_2O$, which was identified by an X-ray diffraction study (see later). Presumably this was obtained by hydrolysis of the initially formed dinitrate $TsiSnMe(ONO_2)_2$ by water in the MeOH, which was not dried before use. The nitrato-oxide $\{Ph_2(O_2NO)Sn\}_2O$ was shown some years ago to be formed when Ph_2SnI_2 was treated with

AgNO₃ in acetone or when a solution of $Ph_2Sn(NO_3)_2$ in CHCl₃ was boiled with exposure to the air [8].

2.3. The alkoxides $TpsiSnMe_2OR$ (R = Me, Et)

The ethoxide TpsiSnMe₂OEt was unexpectedly obtained, in high yield, when the product of the reaction of TpsiLi with Me₂SnCl₂, presumably TpsiSnMe₂Cl, was recrystallized from boiling EtOH, the boiling lasting only 10 min. In contrast, reaction of TpsiSnMe₂Cl with MeOH under reflux was slow, 4 days being required for completion of the reaction. This large difference between the rates of reaction in MeOH and EtOH is puzzling, since it seems much too large to be attributed to the difference of ca. 13°C between the boiling points of the solvents. There could have been some LiOH present in the initial crude product as a result of hydrolysis of residual TpsiLi during work-up, but the amount of this (and hence of LiOEt formed from it in EtOH) could not have been sufficient to use up more than say 10% of the chloride.

An interesting, and apparently novel, reaction was observed when the ethoxide was treated with ICl in CH_2Cl_2 , the chloride being readily formed (Eq. (6)). Corresponding reactions were found to take place with Br_2 and even I_2 (Eq. (7)).

$$TpsiSnMe_2OEt + ICl \rightarrow TpsiSnMe_2Cl (+EtOI?)$$
(6)

 $TpsiSnMe_2OEt + X_2$

$$\rightarrow TpsiSnMe_2X (+EtOX?) (X = Br, I)$$
(7)

When an excess of ICl or Br_2 was used an Sn–Me bond was cleaved, to give TpsiSnMeCl₂ or TpsiSn-MeBr₂, respectively. However only the monoiodo compound was obtained when a large excess of I₂ was used.

This type of reaction has not, as far as we can ascertain, been observed previously for organotin alkoxides. That it is probably general was confirmed by formation of Bu₃SnCl from Bu₃SnOEt and ICl. It could possibly find application for in situ generation of (unstable) alkyl hypohalites ROX, which are useful intermediates in organic synthesis [9].

2.4. Reactions of chlorides with LiAlH₄

Reduction of the bromides $TsiSnMe_2Br$ and $TsiSnMeBr_2$ with $LiAlH_4$ was shown previously to give the corresponding hydrides $TsiSnMe_2H$ and $TsiSnMeH_2$ [1]. We found that the chlorides $TsiSnRCl_2$ (R = Me, Ph) behaved analogously to give the expected dihydrides in high yield (Eq. (8)), but $TpsiSnMe_2Cl$ gave only the cleavage product TpsiH (Eq. (9)).

 $TsiSnRCl_2 + LiAlH_4 \rightarrow TsiSnRH_2 (R = Me, Ph)$ (8)

 $TpsiSnMe_2Cl + LiAlH_4 \rightarrow TpsiH (+ Me_2SnH_2?)$ (9)

2.5. The compounds $(Me_3Si)_2C(SnPh_3)_2$, $(Me_3Si)_2C(SnMe_2Ph)_2$, $(Me_3Si)_2C(SnMe_2Ph)SiMe_2Cl$ and $(Me_3Si)_2C(SnMe_2F)SiMe_2F$

An attempt obtain the compound to (Me₃Si)₂C(SnPh₃)₂ by treatment of (Me₃Si)₂CCl₂ with Ph₃SnLi yielded (Me₃Si)₂CH(SnPh₃) in 10% yield and Ph₃SnSnPh₃ as the main product. However, the related compound (Me₃Si)₂C(SnMe₂Ph)₂ was made by treatment of (Me₃Si)₂C(SnMe₂Cl)₂ with phenyllithium. This compound was used to provide a route (see Eqs. (10a) and (10b)) to the chloride (Me₃Si)₂C(SnMe₂Ph)SiMe₂Cl which was required in order to find out whether migration of the Ph group might accompany replacement of the Cl atom by fluorine upon reaction with AgBF₄. (Migration of Me groups was previously observed in the reactions of the iodide (Me₃Si)₂C(SnMe₃)SiMe₂I with silver salts, including AgBF₄ in CH₂Cl₂, which gave exclusively the rearranged (Me₃Si)₃CSnMe₂F [10].) The compound (Me₃Si)₂C(SnMe₂Ph)₂ was treated with one equivalent of MeLi in Et₂O-THF to give (Me₃Si)₂C(SnMe₂Ph)Li. Addition of Me₂SiCl₂ to the solution of the latter then gave (Me₃Si)₂C(SnMe₂Ph)SiMe₂Cl in good yield.

$$(Me_{3}Si)_{2}C(SnMe_{2}Ph)_{2} + MeLi$$

$$\rightarrow (Me_{3}Si)_{2}C(SnMe_{2}Ph)Li$$
(10a)

$$(Me_3Si)_2C(SnMe_2Ph)Li + Me_2SiCl_2$$

$$\rightarrow (Me_3Si)_2C(SnMe_2Ph)(SiMe_2Cl)$$
(10b)

When the latter chloride was treated with a 1 M proportion of $AgBF_4$ in CH_2Cl_2 there was no reaction for 24 h at room temperature, but when the mixture was heated under reflux for 20 min reaction was complete. However, the product, isolated in 96% yield, was the difluoride $(Me_3Si)_2C(SnMe_2F)SiMe_2F$ (Eq. (11)).

$$(Me_{3}Si)_{2}C(SnMe_{2}Ph)(SiMe_{2}Cl) + AgBF_{4}$$

$$\rightarrow (Me_{3}Si)_{2}C(SnMe_{2}F)(SiMe_{2}F)$$
(11)

It is noteworthy that each AgBF₄ molecule supplies two F atoms. Since Si-Cl bonds are much less reactive than Si-I bonds towards silver salts in compounds of this general type, we assume that the initial reaction involves attack at the Sn–Ph bond to give (Me₃Si)₂C(SnMe₂F)(SiMe₂Cl) and (unstable) AgPh with liberation of BF₃, and that the latter then brings about fluorination at Si. It is likely that the F atom in (Me₃Si)₂C(SnMe₂F)(SiMe₂Cl) provides anchimeric assistance to abstraction of Cl⁻ by Ag⁺. (Compare such assistance from F atoms in compounds of the type $(Me_{3}Si)_{2}C(SiMe_{2}F)(SiMe_{2}X)$ [11].)

2.6. Crystal structures

(A)

2.6.1. {*TsiMe(ONO₂)Sn*}₂O, 1

The crystal of 1 was found to contain molecules of C_2 symmetry, disordered about the Sn–O–Sn linkage, as shown in Fig. 1A, with site occupancies of 0.72 and 0.28. The disorder affects the accuracy of the geometrical data, especially for the Tsi group. The molecular structure of the major configuration is shown in Fig. 1B, and the selected bond lengths and angles shown in Table 1 refer only to this configuration. The main features are that: (a) the compound is monomeric (there principle have been intermolecular could in SnON(O)O...Sn coordination to give a polymer, as is the case for corresponding Cl...Sn interaction in the chloride-oxide (Me₂ClSn)₂O [12]); (b) the Tsi groups are in a trans disposition with respect to the Sn-O-Sn linkage; and (c) the NO₃ ligand is bonded through only one O atom.

Crystal structures of tin(IV) nitrate and several organotin nitrates have been reported [13]. In all but one case the nitrato groups are bound in a bidentate fashion, though sometimes very unsymmetrically; for example, whereas in $Sn(ONO_2)_4$ the two Sn-O bonds to each NO_3 group are identical within the experimental

C1

Fig. 1. (A) Structure of $\{TsiMe(O_2NO)Sn\}_2O$, 1, showing the disorder about the Sn–O–Sn linkage. Occupancies: filled bonds 0.72, open bonds, 0.28. (B) Structure showing the numbering scheme for the major configuration.

Table 1 Selected bond lengths (Å) and angles (°), with estimated standard deviations in parentheses, for $\{(Me_3Si)_3CMe(O_2NO)Sn\}_2O, 1$

Sn-O(1)	1.975(4)	Sn-O(2)	2.109(10)
Sn-C(1)	2.120(11)	Sn-C(11)	2.142(14)
Si-C(1) mean	1.928(10)	Si-Me mean	1.923(12)
O(2)–N	1.25(2)	O(3)–N	1.21(2)
O(4)–N	1.15(2)		
O(1)-Sn-O(2)	93.1(4)	O(1)-Sn-C(1)	111.2(4)
O(1)-Sn-C(11)	109.1(4)	O(2)-Sn- $C(1)$	104.5(4)
O(2)-Sn-C(11)	111.3(5)	C(1)-Sn-C(11)	123.3(5)
C(1)–Si–Me mean	111.1(6)	Me-Si-Me mean	107.7(9)
Si-C(1)-Si mean	111.0(6)	Sn-O-Sn	127.5(5)
Sn-O(2)-N	125(1)	O(2)–N–O(3)	115(1)
O(2)-N-O(4)	117(2)	O(2)-N-O(4)	128(2)
Sn-C(1)-Si(1)	111.6(5)	Sn-C(1)-Si(2)	108.0(5)
Sn-C(1)-Si(3)	104.1(5)		

uncertainty [14], in TpsiSnMe₂ONO₂ one O atom is strongly bound at a distance of 2.095(5) Å from Sn, and another interacts only weakly at a distance of 2.929(8) Å (which is still 0.8 Å below the sum of the relevant van der Waals radii) [7]. The exception is provided by the compound Me₂Sn(OH)(ONO₂), which crystallizes as a dimer in which intramolecular O–Sn coordination makes the Sn atoms five-coordinate [15], this possibly inhibiting bidentate coordination of the NO₃ group. Thus as far as we are aware **1** represents the only example of monodentate coordination of this group to a four-coordinate Sn centre.

Relevant details of the structure of 1 are as follows. (a) The Sn–O(2) bond length, 2.109(10) Å, is the same as that of the main O-Sn bond in TpsiSnMe₂ONO₂. (b) The Sn–O–N angle, 125(1)°, is significantly larger than the corresponding angle for the stronger O-Sn bond in TpsiSnMe₂ONO₂, 116.6(4) Å, confirming that in the latter there is a definite secondary O...Sn interaction that draws the N atom over towards the Sn. (c) There is a planar geometry at the N atom, the sum of the O-N-O angles being 360°. (d) The Sn-O-Sn angle, 127.5(5)°, is significantly smaller than that in $(Ph_3Sn)_2O$, $137(3)^\circ$, in which the tin atoms are also four-coordinate [16]. (e) There is substantial deviation from ideal tetrahedral geometry at Sn, probably as a consequence of the large size of the Tsi ligand; the C-Sn-O angles vary from 104 to 111°, the C-Sn-C angle, 123°, is wide, and the O-Sn-O angle, 93°, narrow.

2.6.2. TpsiSnMeCl₂, 2

This compound was shown to be monomeric in the solid with the tin four-coordinate (see Fig. 2), unlike the great majority of diorganotin dichlorides, which form polymeric chains (though Ph_2SnCl_2 is probably monomeric [17]). There was found to be disorder involving one of the Cl groups and the Me group on Sn,

Fig. 2. Molecular structure of TpsiSnMeCl₂, 2.

the site labelled Cl(2) being occupied by Cl and C atoms in 64/36 ratio and the site labelled C(26) correspondingly having Cl and C in 36/64 ratio. Selected bond lengths and angles are shown in Table 2. The Sn-Cl(1) bond length, 2.353(3) Å, is slightly shorter that (2.380(3) Å) in the monomeric than {(Me₃Si)₂CH}₃SnCl [18], in which the Sn atom is four coordinate and shows almost perfect tetrahedral geometry. The only other noteworthy feature is that the bulk of the Tpsi group causes the Cl and Me ligands on Sn draw together, the Cl(1)-Sn-Cl(2), to C(26)–Sn–Cl(1) and C(26)–Sn–Cl(2) angles being 98.5(1), 103.6(2) and 107.2(2)°, respectively, with correspondingly large C(1)-Sn-Cl(1), C(1)-Sn-Cl(2), and C(1)-Sn-C(26) angles of 112.2(2), 113.7(2) and 119.3(3)°, respectively.

The torsion angles about Si-C bonds show that the three SiMe₂Ph groups have the same configurations

Table 2

Selected bond distances (Å) and angles (°) in $(PhMe_2Si)_3CSnMeCl_2$, 2, and $(PhMe_2Si)_3CSnCl_3$, 3, with estimated standard deviations in parentheses

	2	3
Sn-Cl(1)	2.353(3)	2.317(4)
Sn-Cl(2)	2.312(4)	
Sn-C(26)	2.225(6)	
Sn-C(1)	2.173(7)	2.16(2)
Si-C(Ph) mean	1.879(8)	1.858(10)
Si-C(Me) mean	1.879(9)	1.854(12)
Cl(1)-Sn-Cl(2)	98.5(1)	100.6(1)
C1-Sn-C(1) mean	113.0(2)	117.3(1)
Cl(1)-Sn-C(26)	103.6(2)	
Cl(2)-Sn-C(26)	107.2(2)	
C(1)-Sn-C(26)	119.3(3)	
C(1)-Si-C mean	112.9(4)	111.8(5)
C-Si-C mean	105.8(4)	107.0(5)
Sn-C(1)-Si mean	104.2(3)	103.6(4)
Si-C(1)-Si mean	114.2(4)	114.7(4)

Fig. 3. Molecular structure of TpsiSnCl₃, 3.

with respect to the substituents at the central carbon atom, so that the $C(SiMe_2Ph)_3$ group has the propellerlike symmetry found in TpsiH [19], TpsiBF₂OH [20] and [TpsiBH₃]⁻ [21]. (The Tpsi group in Tpsi-SnMe₂ONO₂ has lower symmetry [7].) The largest groups, Ph and SnMe₂Cl, are staggered about the C – Si bonds but the torsion angles are twisted from the ideal 180° to 156–160° by repulsions between methyl groups attached to adjacent silicon atoms in 1,3-positions. Such distortions have been observed in all Tpsi derivatives studied so far.

2.6.3. TpsiSnCl₃, 3

An X-ray diffraction study of this trihalide seemed likely to be of interest since there appears to be no previous report on the structure of a simple organotin trihalide of the type RSnCl₃. The structure was derived from a set of strong sharp reflections and solved in a centrosymmetrical trigonal space group with two independent monomers in the asymmetric unit, one in a general position and the other on the three-fold axis. The molecules, each with C_3 symmetry, are stacked in chains with their principal axes parallel to c. Those in one chain point in one direction, those in the second chain point in the opposite direction, and those in the third chain point randomly in either direction. If data on additional broad reflections are included the structure can be indexed on the basis of a larger unit cell with the same c axis. The data suggest that over limited regions within the crystal the molecules in the third chain are ordered and these regions give the weak broad X-ray reflections. The strong sharp reflections arise from the disordered regions. The molecular structure is shown in Fig. 3 and the bond lengths and angles for the undisordered molecule are given in Table 2. Those of the other molecule are not significantly different. The values are very similar to those in TpsiSn-MeCl₂ and so are not discussed further. The propeller-like configuration of the Tpsi group is reflected in the trigonal symmetry of the lattice. The compound TpsiSiCl₃ has an almost identical structure with similar lattice disorder. It is possible that it should have been refined in $P\overline{3}$ (See experimental section) not P3 as reported [22].

3. Experimental

All reactions involving organo-lithium or -magnesium compounds were carried out under dry argon. Solvents were carefully dried by standard methods. Solutions of MeLi in Et_2O and BuLi in hexane were purchased from Aldrich.

The IR spectra were recorded with a Perkin-Elmer 1720 FTIR Spectrometer. EI or, where indicated, FAB mass spectra were obtained at 70 eV on a Kratos MS 80RF or MS25 spectrometer; m/z values refer to ions containing ¹²⁰Sn. The suggested ion assignments are not intended to indicate fragmentation routes but they provide further evidence that compounds containing the Tpsi group give prominent ions at m/z 325, 309, 263 and 175 [5]. The NMR spectra were recorded with a Brüker AC 250 spectrometer, for ¹H at 250.13 MHz, for ¹³C at 62.85 MHz, and for ²⁹Si at 49.69 MHz (reference SiMe₄), for ¹⁹F at 75.42 MHz (reference CFCl₃), and for ¹¹⁹Sn at 93.3 MHz (reference SnMe₄). Coupling constants involving ¹¹⁷Sn and ¹¹⁹Sn are separately indicated when satellites were clearly resolved; otherwise only one value without the Sn mass mumber is given.

The starting materials TsiLi [23] and TpsiLi [24] were prepared in situ by metallation of TsiH orTpsiH with methyllithium in boiling THF. Metallation was 90– 98% within 1 h. A few drops of Me₃SiOMe were added to destroy any unchanged methyllithium before the solution was used. The compounds TsiSiR₂Cl, R = Meor Ph, were made as described previously [5]. Several compounds described here have been synthesised previously by other methods. Their identities were established by C, H analysis and multinuclear NMR spectroscopy. We have given details only when substantial new information, e.g. about coupling constants, has been obtained.

3.1. Reaction of (Me₃Si)₃CSnMe₂Cl with ICl

A solution of ICl (2.5 mmol) in CCl₄ was added dropwise to a solution of $(Me_3Si)_3CSnMe_2Cl$ (1.0 g, 2.4 mmol) in CCl₄. Monitoring by ¹H NMR spectroscopy showed that the reaction was complete within 30 min. The solvent was then removed to leave a white solid, which was recrystallised from hexane to give dichloro-(methyl) {tris(trimethylsilyl)methyl}stannane (1.0 g, 98%), m.p. 344 °C (lit. [1], 320°C). δ (H) (CDCl₃) 0.37 (27H, s, ²J(HSi) 6.4 Hz, ¹J(HC) 118.6 Hz, SiMe₃), 1.23 ppm (3H, s, ²J(H¹¹⁷Sn) 60 Hz, ²J(H¹¹⁹Sn) 62 Hz, MeSn). δ (C) (CDCl₃) 4.6 (s, ³J(CSn) 26.8 Hz, ¹J(CSi) 52.1 Hz, Me₃Si), 12.6 (s, ¹J(CSn) 455 Hz, MeSn) 19.9 (s, CSi₃). δ (Si) (CDCl₃): 0.15. δ (Sn) (CDCl₃): 95.8, *m*/*z*: (421 (35%, M–Me), 221 (100, M–Me–Me₃SnCl), 201 (55, M–Me–Me₂SnCl₂), 73 (45 Me₃Si), 59 (10, Me₂HSi).

3.2. Reaction of $(Me_3Si)_3CSnMe_2Cl$ with an excess of ICl

A solution of ICl (6.0 mmol) in CCl₄ (1.0 M) was added dropwise to a solution of (Me₃Si)₃CSnMe₂Cl (1.0 g, 2.4 mmol) in CCl_4 (10 cm³) and the mixture was stirred for 1 h. The solvent was removed to leave a white solid, which was recrystallised from hexane to give trichloro{tris(trimethylsilyl)methyl}stannane (1.0 g, 99%), m.p. 315°C (dec.), (lit. [1], 290°C, dec.). δ (H) $(CDCl_3)$: 0.41 (s, ²*J*(HSi) 6.4 Hz, Me₃Si); $\delta(C)$ NMR (CDCl₃): 4.4 (s, ¹J(CSi) 52.6 ³J(CSn) 37.9 Hz, Me), 32.3 (s, ${}^{1}J(CSn)$ 113 ${}^{1}J(CSi)$ 25.5 Hz, SnMe₂). $\delta(Si)$ $(CDCl_3)$: 1.4. $\delta(Sn)$ $(CDCl_3)$: -36.4 (s), m/z: 441 (20%, M–Me), 221 (80, $M-Me-Me_2SnCl_2$, 201 (55, M-Me-MeSnCl₃), 73 (10, Me₃Si), 59 (30, Me₂HSi), 45 (15%, MeH₂Si).

3.3. Reaction of (Me₃Si)₃CSnMe₂Cl with Br₂

A solution of Br_2 (2.5 mmol) in CCl_4 (2.5 cm³) was added with stirring to a solution of $(Me_3Si)_3CSnMe_2Cl$ (1.0 g, 2.4 mmol) in CCl_4 (20 cm³). The reaction was monitored by ¹HMR spectroscopy and found to be complete after 30 min. The solvent was removed to leave a white solid which was recrystallised from hexane and shown to be dibromo(methyl){tris(trimethylsilyl)methyl}stannane (1.1 g, 87%), m.p. 290°C (dec.), (lit. [1], 318°C, dec.). δ (Si) (CDCl₃) 0.45 (s). δ (Sn) (CDCl₃): +18.8, m/z 509 (20%, M–Me), 445 (33, M–Br), 376 (20), 307 (18, M–Me₂SiBr–HBr), 201 (30), 73 (70).

3.4. Reaction of (Me₃Si)₃CSnMeBr₂ with AgNO₃

A solution of (Me₃Si)₃CSnMeBr₂ (2.0 g, 3.8 mmol) in CH_2Cl_2 (20 cm³) was added to a solution of AgNO₃ (1.34 g, 7.8 mmol) in CH₂Cl₂ (20 cm³). The mixture was stirred for 7 h with protection from light, then filtered through charcoal. The solvent was removed under reduced pressure to leave a white solid, which was recrystallised from MeOH to give bis{methyl(nitrato) {tris(trimethylsilyl)methyl}tin) oxide (2.9 g, 87%), m.p. 187-189°C. Anal. found: C, 31.1; Η 6.9. $C_{22}H_{60}N_2O_7Si_6Sn_2$. Calc.: C 30.3; H 6.9%. $\delta(H)$ $(CDCl_3): 0.27 (6H, s, MeSn), 0.34 (54H, s, Me_3Si). \delta(C)$ (CDCl₃): 4.7 (Me₃Si), 4.9 (MeSn). δ (Si) (CDCl₃): -0.22. δ (Sn) (CDCl₃): 81.5, m/z 857 (10%, M–Me), 808 (10), 733 (30), 381 (80), 201 (70), 73 (100).

3.5. Reaction of $(Me_3Si)_3CSnMe_2Cl$ with an excess of Br_2

An excess of a 1 M solution of Br_2 in CCl_4 (10 mmol) was added to $(Me_3Si)_3CSnMe_2Cl$ (1.00 g, 2.40 mmol) in CCl_4 (20 cm³). The mixture was stirred for 24 h then

the solvent was removed to leave a white solid, which was recrystallised from hexane to give dibromo(methyl){tris(trimethylsilyl)methyl}stannane, (1.2 g, 95%), m.p. 290°C (dec.). The C, H analysis and ¹H NMR spectra were identical to those of $(Me_3Si)_3CSnMeBr_2$ described above.

3.6. Attempted reaction between I_2 and $(Me_3Si)_3CSnMe_2Cl$

A 1 M solution of I_2 in CCl₄ (10 cm³) was added dropwise with stirring to $(Me_3Si)_3CSnMe_2Cl$ (1.0 g, 2.4 mmol) in CCl₄ (10 cm³) and the mixture was stirred overnight. No change was detected by ¹H NMR spectroscopy, and so the mixture was heated under reflux for 4 h and then allowed to cool. Evaporation of the solvent under reduced pressure gave unchanged $(Me_3Si)_3CSnMe_2Cl$ (0.9 g, 90%), m.p. 337°C.

3.7. Reaction of (Me₃Si)₃CSnMeCl₂ with LiAIH₄

A solution of LiAlH₄ (0.38 g, 10 mmol) in THF (10 cm³) was added dropwise with stirring under nitrogen to a solution of (Me₃Si)₃CSnMeCl₂ (2.0 g, 4.5 mmol) in THF (20 cm³). The mixture was stirred for 5 min, the solvent removed under vacuum, and the residue extracted with hexane. The hexane was evaporated from the extract and the residue was recrystallised from hexane to give a white solid identified as methyl{tris(trimethylsilyl)methyl}stannane (1.5 g, 90%), m.p. 211°C (dec.). IR v(SnH) (KBr) 1839 cm⁻¹, δ (H) (CDCl₃): δ 0.22 (27H, s, ²J(HSi) 6.2 Hz, Me₃Si), 0.31 (3H, s, MeSn), and 5.04 (q, 2H, ³J(HH) 2.4 Hz, ${}^{1}J(\mathrm{H}^{119}\mathrm{Sn})$ 1817 Hz, ${}^{1}J(\mathrm{H}^{117}\mathrm{Sn})$ 1737 Hz, SnH_{2}). $\delta(\mathrm{C})$ (C_6D_6) : - 8.45 (s, MeSn)), 4.22 (s, ³J(CSn) 18.6 Hz, Me₃Si). δ (Si) (C₆D₆): δ 0.1 (s, Me₃Si); δ (Sn) (C₆D₆): -206.8 (t of q, ¹J (¹¹⁹SnH) 1817, ²J (SnH) 54.3Hz), m/z(CI NH₃): 353 (85%, M-Me), 217 (50), 187 (100, M-Me₃SnH-Me), 129 (40, Me₂SiCH=SiMe₂), 73 (90, Me₃Si).

When a sample of the product (0.10 g, 0.27 mmol) was placed in an NMR tube and CH_2Cl_2 (2 cm³) was added the ¹H NMR spectrum was found to be identical with that of (Me₃Si)₃CSnMeCl₂, and addition of an authentic sample of the the latter only enhanced the signals.

3.8. Reaction of (Me₃Si)₃CSnPh₂Cl with ICl

A solution of ICl (1.9 mmol, 1.9 cm³) in CCl₄ was added dropwise to a solution of $(Me_3Si)_3CSnPh_2Cl$ (1.0 g, 1.8 mmol) in CCl₄ (10 cm³) at room temperature and the mixture was stirred for a further 3 h. The solvent was then pumped away and the residue recrystallised from hexane to give dichloro(phenyl){tris(trimethylsilyl)methyl}stannane (0.8 g, 88%), m.p. 162°C. Anal. found: C, 38.0; H, 6.3. $C_{16}H_{32}Cl_2Si_3Sn$ calc: C, 38.6; H, 6.4%. δ (H) (CDCl₃): 0.40 (27H, s, Me₃Si), 7.4–7.8 (5H, m, Ph). δ (C) (CDCl₃): 4.95 (³*J*(CSn) 27.6 Hz, Me₃Si), 129.3 (C₃) 129.9 (C₄), 134.7 (C₂), 143.4 (C₁). δ (Si) (CDCl₃), 0.4 (s, ¹*J*(SiC) 53 Hz). δ (Sn) (CDCl₃): +10.2, *m/z* 483 (100%, M–Me), 448 (60, M–HCl–Me), 279 (30), 247 (35), 201 (35), 149 (40), 73 (50, Me₃Si), 58 (25, Me₂Si), 45 (15, MeH₂Si).

3.9. Reaction of $(Me_3Si)_3CSnPh_2Cl$ with an excess of ICl

A solution of ICl (20 mmol) in CCl₄ (20 cm³) was added to a solution of $(Me_3Si)_3CSnPh_2Cl$ (1.0 g, 1.8 mmol) in CCl₄ (10 cm³), and the mixture was stirred overnight. The solvent was removed to leave a white solid, which was recrystallised from hexane to give white cube-like crystals of trichloro{tris(trimethyl)silyl) methyl}stannane (0.8 g, 96%), m.p. 315°C (dec.) with spectra identical with those given above for this compound.

3.10. Reaction of (Me₃Si)₃CSnPh₂Cl with Br₂

A solution of Br_2 (2.0 mmol) in CCl_4 (2.0 cm³) was added dropwise to a solution of $(Me_3Si)_3CSnPh_2Cl$ (1.0 g, 1.8 mmol) in CCl_4 (10 cm³) and the mixture stirred for 1 h. The solvent was then removed and the white solid recrystallised from hexane to give dibromo(phenyl){tris(trimethylsilyl)methyl}stannane, (0.9 g, 85%), m.p. 241°C.

Anal. found: C, 32.8; H, 5.3. $C_{16}H_{32}Br_2Si_3Sn.$ Calc: C, 32.8; H, 5.5%. δ (H) (CDCl₃): 0.40 (27H, s, Me₃Si), 7.45–7.85 (5H, m, Ph). δ (C) (CDCl₃): 5.0 (s, ³*J*(CSn) 27.3 Hz, Me₃Si), 129.0 (C₃), 130.6 (C₂), 134.8 (C₄), 143.3 (C₁). δ (Si) (CDCl₃): 0.7. δ (Sn) (CDCl₃): – 38.3. *m*/*z* 571 (25%, M–Me), 507 (70, M–Br), 492(60), 427(70), 327(30), 307(70), 201(50), 136(80), 73 (100).

3.11. Reaction of $(Me_3Si)_3CSnPh_2Cl$ with an excess of Br_2

A solution of Br₂ (10.0 mmol) in CCl₄ (10.0 cm³) was added dropwise to a solution of $(Me_3Si)_3CSnPh_2Cl$ (1.0 g, 1.8 mmol) in CCl₄ (20 cm³). The mixture was stirred for 6 h and the solvent then removed to leave a white solid, which was recrystallised from hexane to give tribromo{tris(trimethylsilyl)methyl}stannane, (0.9 g, 91%), m.p. 290°C (dec.). δ (C) (CDCl₃) 4.6 (¹J(CSi) 52.6, ³J(CSn) 38.4 Hz, Me₃Si). δ (Si) (CDCl₃): 1.7 (s). δ (Sn) (CDCl₃) – 236 ppm. m/z 573 (40%, M–Me), 509 (48, M–Br), 265 (60, M–Me–Me₂SnBr₂), 201 (85, M–Me–MeSnBr₃), 136(95), 73 (100), 43 (90).

3.12. Reaction of $(Me_3Si)_3CSnPh_2Cl$ with I_2

A solution of I_2 (20 mmol) in CCl₄ (20 cm³) was added to a solution of $(Me_3Si)_3CSnPh_2Cl$ [5] (1.0 g, 1.8 mmol) in CCl₄ (10 cm³) and the mixture was stirred overnight. The solvent was then removed to leave a white solid which was shown by its analysis and ¹H NMR spectrum to be unchanged starting material, chloro(diphenyl){tris(trimethylsilyl)methyl}stannane (0.90 g, 88%), m.p. 203 (Lit. [4] 208°C), with NMR spectra which agreed with those obtained previously [5].

3.13. Reaction of (Me₃Si)₃CSnPhCl₂ with LiAlH₄

A solution of LiAlH₄ (4.2 mmol) in THF (10 cm³) was added to a solution of (Me₃Si)₃CSnPhCl₂ (1.0 g, 2.0 mmol) in THF (10 cm³) under nitrogen. When the addition was complete the solvent was removed, the residue extracted with dry hexane, and the extract filtered and evaporated to leave a white solid, which recrystallised from was hexane to give phenyl{tris(trimethylsilyl)methyl}stannane, (0.81)g, 94%), m.p. 138°C (dec.). IR (Nujol) v(Sn-H) 1840 cm⁻¹. (Because of difficulties in combusting the compound a satisfactory analysis could not be obtained.) δ (H) (C₆H₆): 0.25 (27H, s, ²J(¹HSi) 6.2 Hz, Me₃Si), 5.9 (2H, s, ¹*J*(H¹¹⁹Sn) 1865 Hz, ¹*J*(H¹¹⁷Sn) 1782 Hz, SnH₂) 7.05–7.83 (m, 5H, Ph). δ (C) (C₆H₆): 4.4 (Me₃Si), 128.8, 129.2, 138.5 (Ph). δ (Si) (C₆H₆) 0.36. δ (Sn) (C₆H₆) - 193. m/z 415 (30, M-Me), 337 (25, M-Me-PhH), 247 (30), 217 (100), 187 (55), 129 (40), 73 (60). When a sample was dissolved in CH₂Cl₂ in an NMR tube the ¹H NMR spectrum was found to be identical with that of (Me₃Si)₃CSnPhCl₂, and addition of an authentic sample of the latter only enhanced the signals.

3.14. Preparation of (Me₃Si)₃CSnF₃

A solution of $(Me_3Si)_3CSnCl_3$ (2.0 g, 4.4 mmol) in CH_2Cl_2 (20 cm³) was added dropwise during 10 min to a solution of AgBF₄ (1.0 g, 5.1 mmol) in CH_2Cl_2 (10 cm³). The mixture was stirred for 3 h with protection from light then filtered. The solvent was removed from the filtrate to leave a white solid which was recrystallised from hexane to give trifluoro{tris(trimethyl-silyl)methyl}stannane (1.7 g, 94%), m.p. 211°C (dec.). Found: C, 29.4; H, 6.9. $C_{10}H_{27}F_3Si_3Sn$. Calc.: C, 29.6; H, 6.6%. $\delta(H)$ (C₆D₆) 0.26. $\delta(C)$ (C₆D₆): 4.4 (³J(CSn) 37.5 Hz, Me_3Si). $\delta(Si)$ (C₆D₆) 1.0. $\delta(Sn)$ (C₆D₆): - 33.0 $\delta(F)$ (C₆D₆) - 145.1 (J(FSn) 3458 Hz). m/z 393 (10%, M–Me), 217 (30), 201 (50), 165 (90), 129 (15), 85 (30), 73 (100).

3.15. Preparation of (Me₂PhSi)₃CSnMe₂OEt

A solution of Me₂SnCl₂ (9.5 g, 43 mmol) in 1:1 THF/Et₂O (20 cm³) was added dropwise to a solution of (Me₂PhSi)₃CLi (43 mmol) in THF (30 cm³) during 10 min at room temperature. The mixture was heated under reflux for 10 min and the solvent then removed. The pale yellow residue was extracted into CH₂Cl₂ (50 cm³), the extract was filtered, and the solvent was removed. The residue was dissolved in boiling EtOH and the solution was allowed to cool to room temperagive white crystals of ethoxy(dimetture to hyl){tris(dimethylphenylsilyl)methyl}stannane, (20 g, 76%), m.p 130°C. Anal. found: C, 56.2: H, 7.1. C₂₉H₄₄OSi₃Sn. Calc.: C, 56.9; H, 7.2%. δ(H) (CD₂Cl₂) 0.57 (18H, s, Me₂Si), 0.59 (6H, s, Me₂Sn), 1.24 (t, CH₃CH₂O), 3.81 (q, CH₂O), 6.97–7.3 (15H, m, Ph). $\delta(C)$ (CD₂Cl₂): 4.8 (Me₂Si), 4.9 (Me₂Sn), 21.0 (CH₃CH₂O), 60.5 (CH₂O), 129.0 (C₄), 127.7 (C₃), 136.2 (C₂), 141(C₁). δ (Si) (CD₂Cl₂): -5.94. δ (Sn) (CD₂Cl₂) 92.7. m/z 597 (20%, M-Me), 551 (40, M-EtOH-Me), 402 (20, M-Me₃SnOEt), 309 (40) 250 (20), 197 (35), 165 (25), 135 (100), 73 (30).

3.16. Reaction of (Me₂PhSi)₃CSnMe₂OEt with ICl

A solution of ICl (3.3 mmol) in CCl₄ was added dropwise to a solution of $(Me_2PhSi)_3CSnMe_2OEt$ (2.0 g, 3.2 mmol) in CCl₄ (10 cm³), and the mixture was stirred for 1 h. The solvent was then removed to leave a white solid, which was recrystallised from hexane (10 cm³) to give chloro(dimethyl){tris(dimethylphenylsilyl)methyl}stannane. (1.9 g, 96%), m.p. 188°C. (Lit. [5] 186°C). δ (Si) – 5.7. The C, H analysis and ¹H, ¹³C and ¹¹⁹Sn NMR spectra were identical with those reported previously [5].

3.17. Reaction of (Me₂PhSi)₃CSnMe₂OEt with an excess of ICl

A solution of ICl (10 mmol) in CCl₄ was added to a solution of (Me₂PhSi)₃CSnMe₂OEt (2.0 g, 3.3 mmol) in CCl_4 (10 cm³), and the mixture was stirred for 3 h. The solvent was then removed to leave a white solid, which was recrystallised from hexane to give dichloro(methyl){tris(dimethylphenylsilyl)methyl}stannane (1.9 g, 95%), m.p. 182°C. δ(H) (CDCl₃): 0.76 (18H, s, Me₂Si), 1.18 (3H, s, ²J(HSn) 63.4 Hz, MeSn), 6.89-7.36 (15H, m, Ph). δ(C) (CDCl₃): 4.6 (Me₂Si), 15.0 (MeSn), 127.7 (C_3) , 129.4 (C_4) , 135.8 (C_2) , 138.1 (C_1) . δ (Si) $(CDCl_3)$: $-5.5. \delta$ (Sn) (CDCl₃): 75.7. m/z 622 (5%, M), 607 (5, M-Me), 571 (10,M-HCl-Me), 452 (10.M-Me₂PhSiCl), 437 (5, M-Me₂PhSiCl-Me), 309, 237 (10), 197 (20), 175 (40), 135 (100), 73 (50), 43 (30).

In an attempt to displace a further Me group from tin the experiment was repeated but with the mixture heated under reflux. A complex mixture of products was obtained and not further investigated.

3.18. Reaction of $(Me_2PhSi)_3CSnMe_2OEt$ with Br_2 in 2/1 molar ratio

A solution of Br₂ (1.63 mmol) in CCl₄ was added dropwise to a solution of (Me₂PhSi)₃CSnMe₂OEt (2.0 g, 3.2 mmol) in CCl₄ (10 cm³) and the mixture was stirred for 1 h. The solvent was then pumped off to leave a white solid, which was recrystallised from hexane (10 cm³) to give bromo(dimethyl){tris(dimethylphenylsilyl)methyl}stannane (1.9 g, 91%), m.p. 186°C. Anal. found: C, 50.2; H, 6.2. C₂₇H₃₉BrSi₃Sn. Calc.: C, 50.15; H, 6.0%. δ(H) (CDCl₃): 0.70 (18H, s, Me₂Si), 0.96 (6H, s, ²J(HSn) 56 Hz, Me₂Sn), 6.81-7.3 (15H, m, Ph). $\delta(C)$ (CDCl₃): 4.7, ¹J(CSi) 52.9, ³J(CSn) 14 Hz) Me₂Si), 8.5, (¹J(CSn) 363 Hz, Me₂Sn), 127.6 (C₃) 129.0 (C₄), 135.7 (C₂), 139.5 (¹J(CSi) 33.4 Hz, C₁). δ (Si) (CDCl₃): $-5.7. \ \delta(Sn)$ (CDCl₃): 82. m/z 631 (12%, M-Me), 551 (40, M-Me-HBr), 402 (30 M-Me₃SnBr), 340 (5, M-Me₂PhSnBr), 309 (60), 197 (10), 175 (15), 135 (100), 73 (20).

3.19. Reaction of $(Me_2PhSi)_3CSnMe_2OEt$ with an excess of Br_2

A solution of Br_2 (10.0 mmol) in CCl_4 (10.0 cm³) was added to a solution of (Me₂PhSi)₃CSnMe₂OEt (2.0 g, 3.2 mmol) in CCl_4 (10 cm³). The mixture was stirred for 3 h and the reaction monitored by ¹H NMR spectroscopy. The solvent was then removed to leave a white solid, which was recrystallised from hexane (10 cm³) to yield dibromo(methyl){tris(dimethylphenylsilyl)methyl}stannane (2 g, 87%), m.p. 211°C. Anal. found: C, 43.2; H, 5.0. C₂₆H₃₆Br₂Si₃Sn. Calc.: C, 43.8; H, 5.0%. δ(H) (CDCl₃): 0.83 (18H, s, Me₂Si), 1.55 (3H, s, ²J(HSn) 56.7 Hz, MeSn), 6.8-7.37 (15H, m, Ph). δ (C) (CDCl₃): 4.7 (³J(CSn) 16.3 Hz, ¹J(CSi) 53.2 Hz, Me₂Si), 17.0 (J(CSn) 425 Hz, Me₂Sn), 127.8 (C₃), 129.4 (C₄), 135.9 (C₂), 138.3 (${}^{1}J(CSn)$ 50 Hz, C₁). $\delta(Si)$ (CDCl₃): $-5.4. \delta$ (Sn) (CDCl₃): -7.5. m/z 710 (10%, M), 695 (10, M-Me), 633 (10, M-Ph), 615 (90, 537 (50, M–Br–MeBr), 402 M–Me–HBr), (40. M-Me-Me₂SnBr₂), 309 (75), 197 (70, PhSn), 135 (100, Me₂PhSi), 73 (85, Me₃Si), 43 (97, MeSi).

3.20. Reaction of $(Me_2PhSi)_3CSnMe_2OEt$ with an excess of I_2

A solution of I_2 (10.0 mmol) in CCl₄ (10 cm³) was added to a solution of (Me₂PhSi)₃CSnMe₂OEt (0.90 g, 1.46 mmol) in CCl_4 (10 cm³) and the mixture was stirred for 3 h. The solvent was removed to leave a white solid, which was recrystallised from hexane (10 cm³) to give iododimethyl{tris(dimethylphenylsilyl} methyl}stannane (0.92 g, 90%), m.p. 187°C. Anal. found; C, 46.8; H, 5.9. C₂₇H₃₉ISi₃Sn. Calc.: C, 46.6; H, 5.6%. δ (H) (CDCl₃) 0.73 (s, 18H, Me₂Si), 1.2 (s, 6H, $^{2}J(\text{HSn})$ 51 Hz, Me₂Sn), 6.70–7.4 (m, 15H, Ph). $\delta(\text{C})$ (CDCl₃): 4.8 (Me₂Si), 9.25 (¹J(CSn) 351 Hz, Me₂Sn,), 127.5 (C₃), 128.9 (C₄), 135.7 (C₂), 139 7 (C₁). δ (Si) $(CDCl_3)$: -5.7. $\delta(Sn)$ $(CDCl_3)$: -8.9. m/z 679 (3, M-Me), 567 (40, M-I), 551 (20, M-Me-HI), 489 (25, M-Ph-HI), 402 (50, M-Me₃SnI), 340 15, M-Me₂PhSnI), 325 (80), 309 (90), 263 (25), 247 (45), 197 (50), 175 (47), 135 (100), 78 (95), 43 (100).

3.21. $(Me_2PhSi)_3CSnMe_2ONO_2$ and $(Me_2PhSi)_3CSnMe_2NCS$

The preparations of these compounds were described previously [7].

3.22. Reaction of (Me₂PhSi)₃CSnMe₂Br with Ag₂O

A solution of (Me₂PhSi)₃CSnMe₂Br (2.0 g, 3.0 mmol) in CH_2Cl_2 (15 cm³) was added to a suspension of Ag_2O (1.00 g, 4.3 mmol) in CH₂Cl₂ (10 cm^3) and the mixture was stirred in an open vessel for 24 h. The solvent was then removed to leave a white solid, which was recrystallised from hexane (10 cm³) and found to be bis[dimethyl{tris(dimethylphenylsilyl)methyl}]tin oxide (1.6 g, 92%), m.p. 222°C. Anal. found: C, 56.6; H, 6.9. C₅₄H₇₈OSi₆Sn₂. Calc.: C, 56.3; H, 6.8%. δ(H) (CDCl₃): 0.69 (36H, s, Me₂Si), 0.82 (12H, s, Me₂Sn), 6.6-7.3 (30H, m, Ph). δ (C) (CDCl₃): 4.7 (¹*J*(CSi) 53 Hz, ³*J*(CSn) 15 Hz, Me₂Si), 5.2 (¹*J*(C¹¹⁷Sn) 388, ¹*J*(C¹¹⁹Sn) 406 Hz, Me₂Sn), 127.4 (C₃), 128.4 (C₄), 135.6 (C₂), 140.1 (¹J (CSi) 21 Hz, C₁). δ (Si) (CDCl₃): -5.9. δ (Sn) $(CDCl_3)$ 74.6. m/z 567 $(20\%, (Me_2PhSi)_3CSnMe_2 = R)$, 489 (25, R-PhH), 309 (40, R-Me₄Sn-PhH), 247 (25, R-Me₃SnPh-PhH), 227 (25, Me₂PhSn), 197 (25, PhSn), 154 (70, Ph₂), 91 (70, C₆H₅CH₂), 77 (55, Ph), 73 (50, Me₃Si).

3.23. Reaction of (Me₂PhSi)₃CSnMe₂Cl with LiAlH₄

A solution of $(Me_2PhSi)_3CSnMe_2Cl$ (2.0 g, 3.3 mmol) in dry THF (10 cm³) was added to a solution of LiAlH₄ (0.15 g, 3.9 mmol) in THF (10 cm³) under nitrogen, and the mixture was stirred for 1 h. The solvent was then removed and the residue extracted with anhydrous toluene. The toluene was evaporated from the extract and the residue was recrystallised from hexane and shown to be tris(dimethylphenylsilyl)methane, (Me₂PhSi)₃CH, (1.2 g, 87%), m.p. 103°C (lit. [19], 105°C). ¹H NMR (C₆D₆): 0.25 (18H, s, Me₂Si), 0.53

3.24. Reaction of (Me₂PhSi)₃CSnMe₂Cl with MeOH

A solution of (Me₂PhSi)₃CSnMe₂Cl (2.0 g, 3.3 mmol) in MeOH (20 cm³) was heated under reflux. The progress of the reaction was monitored by ¹H NMR spectroscopy and after 4 days the solvent was removed to give methoxydimethyl{tris(dimethylphenylsilyl)methyl}stannane, (Me₂PhSi)₃CSnMe₂OMe, (1.9 g, 96%), Anal. found: C, 56.1; H, m.p. 132°C. 7.2. $C_{28}H_{42}OSi_3Sn.$ Calc.: C, 56.3; H, 7.0%. $\delta(H)$ (CDCl₃) 0.63 (18H, s, Me₂Si), 0.66 (6H, s, Me₂Sn), 3.7 (3H, s, ${}^{3}J$ (HSn) 41 Hz, OMe), 7.0–7.37 (15H, m, Ph). δ (C) (CDCl₃) 4.5 (Me₂Si), 4.7 (Me₂Sn), 52.8 (OMe), 127.3 (C_3) , 128.6 (C_4) , 135.6 (C_2) , 140.2 (C_1) . $\delta(Si)$ $(CDCl_3)$: $-5.9. \delta$ (Sn) (CDCl₃): 92.6. m/z 583 (25%, M–Me), 551 (40, M-Me-MeOH), 521 (10, M-Ph), 505 (10, M-Ph-MeH), 489 (5, M-Ph-MeOH), 403 (12,M-Me-Me₄Sn), 341 (30, M-Ph-Me₄Sn), 309 (45), 279 (30, M-Ph-Me₃PhSn), 227 (20, Me₂PhSn), 197 (30, PhSn), 175 (25), 151 (35, Me₃PhSi), 135 (100, Me₂PhSi), 73 (40, Me₃Si), 43 (25, MeSi).

3.25. Reaction of (Me₂PhSi)₃CLi with SnCl₄ in THF

A solution of (Me₂PhSi)₃CLi (12.0 mmol) in THF (30 cm³) was added dropwise with stirring during 20 min to a suspension of SnCl₄ (3.1 g, 12.0 mmol) in THF (25 cm³) at 0°C. The mixture was stirred for 1 h at room temperature, the solvent then removed, and the residue extracted with CH_2Cl_2 (30 cm³). The solvent was evaporated from the extract and the residue recrystallised from hexane (50 cm³) to give trichloro {tris(dimethylphenylsilyl)methyl}stannane (2.0 g, 25%), m.p. 222°C. Anal. found: C, 46.5; H, 5.3%. $C_{25}H_{33}Cl_3Si_3Sn.$ Calc.: C, 46.7; H, 5.1%. $\delta(H)$ (CDCl₃): 0.84 (18H, s, ²J (HSi) 6.2 Hz, Me₂Si), 7.0-7.6 (15H, m, Ph). $\delta(C)$ (CDCl₃) 4.7 (s, ³J(CSn), 14.7 Hz, Me₂Si), 127.8 (C₃), 129.7 (C₄), 135.9 (C₂), 136.6 (C₁). δ (Si) $(CDCl_3)$: -5.0. $\delta(Sn)$ $(CDCl_3)$: -56.5. m/z 627 (2%, M-Me), 591 (3, M-Me-HCl), 402 (30, M-MeSnCl₃), 325 (25, M-Ph-MeSnCl₃), 309 (40), 197 (30), 175 (25), 135 (100), 105 (30), 73 (30), 43 (30). A second product began to crystallise out after 3 h as colourless needles and was identified as chloro{tris(dimethylphenylsilyl)}methane, (Me₂PhSi)₃CCl (2.5 g, 46%), m.p. 199°C.(lit. [25] 201°C) Anal. found: C, 66.6; H, 7.4. C₂₅H₃₃ClSi₃. Calc.: C, 66.4; H, 7.3%. The ¹H, ¹³C and ²⁹Si NMR and mass spectra were identical with those recorded previously [26].

3.26. Preparation of Bu₃SnOEt

Sodium (0.15 g, 6.5 mmol) was cautiously dissolved in anhydrous EtOH (10 cm³) and a solution of Bu₃SnCl (2.0 g, 6.1 mmol) in EtOH (10 cm³) was added. The mixture was stirred for 2 h, the solvent then removed, and the residue distilled at 90°C / 0.1 mmHg (Lit. 92°/0.1 mm [27]) to give tributyl(ethoxy)tin, Bu₃SnOEt, (1.9 g, 93%). δ (Sn) (CCl₄–CDCl₃ 1:1) 106. The only value given in the literature for comparison is δ 86 [28], but this is for the neat liquid which is known to be highly associated. Shifts of 90–130 have been reported for trialkylalkoxytins in halogenated or hydrocarbon solvents [29].

3.27. Reaction of Bu₃SnOEt with ICl

A solution of ICl (0.49 g, 3.0 mmol) in CCl₄ (20 cm³) was added dropwise during 10 min to a stirred solution of Bu₃SnOEt (1.9 g, 2.97 mmol) in CCl₄ (10 cm³). The mixture was stirred for a further 5 min, after which the ¹H NMR spectrum showed that reaction was complete. The solvent was removed and the residue distilled at 108–111 °C/20 mmHg to give tributylchlorostannane, Bu₃SnCl, (0.9 g, 93%). δ (Sn) NMR (CCl₄-20% CDCl₃): 154.2. When an authentic sample of Bu₃SnCl was added, the signal was enhanced.

3.28. Reaction of $(Me_3Si)_2CCl_2$ with two equivalents of Ph_3SnLi

A solution of (Me₃Si)₂CCl₂ (5 g, 21.9 mmol), in THF (20 cm³) was added dropwise with stirring during 20 min to a solution of Ph₃SnLi [30] (43.8 mmol) in THF (50 cm³) at 0°C. The mixture was stirred for 3 h, the solvent then removed and the solid residue recrystallised from light petroleum (b.p. 60-80 °C). Initially bis(trimethylsilyl)(triphenylstannyl)methane separated (1.2 g, 10.7%), m.p. 96°C. Anal. found: C, 59.0; H, 6.65. $C_{25}H_{34}Si_2Sn$. Calc.: C, 58.8; H, 6.7%. $\delta(H)$ (C₆D₆): 0.13 (18H, s, Me₃Si), 0.39 (1H, s, CH), 7.0-7.7 (15H, m, Ph). δ (C) (C₆D₆) 0.59 (CH), 3.6 (Me₃Si), 128.8 (C₃), 129.1 (C₄), 137.6 (C₂), 141.4 (C₁). δ (Si) (C_6D_6) 1.5. $\delta(Sn)$ (C_6D_6) 2.1. m/z 495 (3%, M–Me), 433 (8, M-Ph), 351(3, Ph₃Sn),197 (10 PhSn) 167 (50), 151 (100), 135 (20), 73 (30), 43 (15). A second crop of crystals proved to be hexaphenylditin (12 g, 71%), m.p. 225 °C (lit. 229.5-231°C [30,31]).

3.29. Preparation of $(Me_3Si)_2C(SnMe_2Ph)_2$ [32]

A solution of PhLi (8.5 mmol) in Et_2O (10 cm³) was added dropwise to a stirred solution of $(Me_3Si)_2C(SnMe_2Cl)_2$ [5] (2.0 g 3.8 mmol) in THF (20 cm³) at room temperature. The mixture was stirred for 1 h and then treated with a few drops of MeOH to destroy the residual PhLi. The solvent was removed and the residue was extracted into CH_2Cl_2 (50 cm³). The extract was filtered, the solvent was pumped away from the extract and the white residue was recrystallised from MeOH to give (Me₃Si)₂C(SnMe₂Ph)₂ (1.80 g, 78%) m.p. 115°C. Anal. found: C, 41.6; H, 7.5 $C_{23}H_{40}Si_2Sn_2$. Calc.: C, 41.2; H, 7.8%. δ (H) (CH₂Cl₂) 0.16 (18H, s, Me₃Si), 0.5 (12H, s, Me₂Sn ²J(SnH) 49.5 Hz), 7.21–7.58 (10H, m, Ph). δ (C) (CDCl₃/CH₂Cl₂) – 3.1 (¹J(CSn) 329 Hz SnMe₂), 5.2 (³J(CSn) 15.9 Hz, SiMe₃), 127.8(C₃) 128.1(C₄), 136.6 (C₂), 143.7(C₁). δ (Sn) (CDCl₃/CH₂Cl₂) – 19.2. *m/z* 597 (30%, M–Me), 535 (5, M–Ph), 385 (M–PhMe₂Sn), 255(20), 227(20, PhMe₂Sn), 193(20), 165(20), 135(100), 73(95).

3.30. Preparation of (Me₃Si)₂C(SnMe₂Ph)Li

A 1.3 M solution of MeLi in Et₂O (3.8 cm³) was added dropwise to a solution of $(Me_3Si)_2C(SnMe_2Ph)_2$ (3.0 g, 4.9 mmol) in THF (20 cm³), and the mixture was stirred at room temperature for 10 min, after which the reaction was complete. (This was shown by adding a sample (0.5 cm³) of the mixture to Me_3SiCl (2 cm³), replacing the solvent by CH₂Cl₂ and recording the ¹H NMR spectrum, in which the ratio of the integrals of the Me_3Si-signals from (Me_3Si)_3CSnMe_2Ph and (Me_3Si)_2C(SnMe_2Ph)_2 was > 97/3.) A few drops of Me_3SiOMe were added to destroy any residual methyllithium before the solution was used.

3.31. Reaction of $(Me_3Si)_2C(SnMe_2Ph)Li$ with Me_2SiCl_2

A solution of (Me₃Si)₂C(SnMe₂Ph)Li (4.9 mmol) in THF (20 cm³) was added dropwise with stirring to a solution of Me₂SiCl₂ (0.64 g, 5.0 mmol) in THF (10 cm³). The mixture was stirred for a further 10 min and the solvent then removed. The residue was extracted with CH_2Cl_2 (20 cm³), the solvent evaporated from the extract, and the residue recrystallised from hexane (10 cm³) to give needle-like crystals of {(chlorodimethylsilyl)bis(trimethylsilyl)methyl}dimethylphenylstannane, (1.8 g, 76%), m.p. 136°C. Anal found: C, 42.7; H, 7.35. C₁₇H₃₅ClSi₃Sn Calc: C, 42.7; H, 7.3%. δ(H) (CDC1₃): 0.26 (18H, s, ²J(HSi) 6.2 Hz, Me₃Si), 0.53 (s, 6H, ²J(HSi) 6.5 Hz, Me₂Si), 0.59 (s, 6H, ²J(HSn) 50.6 Hz, Me₂Sn), 7.31–7.72 (5H, m, Ph). δ (C) (CDCl₃): -2.5 (¹*J*(CSn) 353 Hz, Me₂Sn); 5.0, (¹*J*(CSi) 51.7 Hz, Me₃Si), 8.5 (Me₂Si), 127.9 (C₃), 128.3 (C₄) 136.9 (C₂), 143.2 ${}^{1}J(\text{CSn})$ 470 Hz, (C₁). $\delta(\text{Si})$ (CDCl₃): -0.6(Me₃Si), 27.9 (Me₂Si). δ (Sn) (CDCl₃): -33.4. m/z 463 (28%, M-Me), 427 (22, M-Me-HCl), 263 (40, Me₂Si=C(SiMe₃)SiMePh), 248 (15), 227 (15), 201 (100, Me₂Si=C(SiMe₃)SiMe₂), 135 (10), 73 (60), 58 (10).

3.32. Reaction of $(Me_3Si)_2C(SnMe_2Ph)(SiMe_2Cl)$ with $AgBF_4$

A solution of (Me₃Si)₂C(SnMe₂Ph)(SiMe₂Cl) (0.50 g, 1.05 mmol) in CH2Cl2 (10 cm3) was added in one portion to AgBF₄ (0.2 g, 1.03 mmol) in CH₂Cl₂ (10 cm³) and the mixture was stirred for 24 h. The ¹H NMR spectrum showed that only the starting material was present. The mixture was heated under reflux for 20 min and then filtered. The solvent was removed from the filtrate and the residue recrystallised from hexane cm³) to give fluoro{(fluorodimethylsilyl)bis (10)(trimethylsilyl)methyl}dimethylstannane (90.4 g, 96%), m.p. 198°C. Anal. found: C, 32.9; H, 7.6. $C_{11}H_{30}F_2Si_3Sn.$ Calc.: C, 32.7; H, 7.4%. $\delta(H)$ (CDCl₃): 0.25 (18H, s, ²J(HSi) 6.1 Hz, Me₃Si), 0.43 (6H, d, ³*J*(HF) 7.5 Hz, Me₂Si), 0.70 (d, 6H, ³*J*(HF) 3.8 Hz, $^{2}J(\text{HSn})$ 55 Hz, Me₂Sn,). $\delta(\text{C})$ (CDC1₃): 4.1 (Me₃Si), 4.3 (Me₂Si), 4.5 (Me₂Sn). δ (Si) (CDCl₃): -1.9 (d, ${}^{3}J(SiF)$ 4.9 Hz, Me₃Si)., -28.4 (d, ${}^{1}J(SiF)$ 281 Hz, SiMe₂F). δ (Sn) (CDCl₃): 146.8 (dd, ¹J(SnF) 2376 Hz, ${}^{3}J(\text{SnF})$ 65.5 Hz). $\delta(\text{F})$ (CDCl₃): -140.4 (sept, ${}^{3}J(\text{FH})$ 7.5 Hz, ${}^{1}J(FSi)$ 283 Hz, SiF), -204.7 (sept unresolved, ¹J (F¹¹⁹Sn) 2379 ¹J(F¹¹⁷Sn) 2272 Hz, ²J(FC) 65 Hz, SnF). m/z 389 (40%, M–Me), 209 (100, M–Me₄Sn–Me), 165 (35, Me₃Sn), 135 (17, MeSn), 73 (35, Me₃Si).

4. Crystal structure determinations

4.1. $[{(Me_3Si)_3C}Me(O_2NO)Sn]_2O, 1$

Crystal data: $C_{22}H_{60}N_2O_7Si_6Sn_2$, monoclinic, C2/c, M = 870.7, a = 14.397(9), b = 10.599(4), c = 26.798(28)Å, $\beta = 93.29(7)^\circ$, U = 4082.3 Å³, Z = 4, $D_c = 1.41$ g cm⁻³, F(000) = 1784, monochromated Mo- K_{α} radiation, $\lambda = 0.71069$ Å, $\mu = 14.34$ cm⁻¹.

A crystal of dimensions $0.43 \times 0.15 \times 0.2$ mm was used for data collection at 21°C on an Enraf-Nonius CAD-4 diffractometer. A total of 3944 reflections with $+h+k \pm l$ and $2 < \theta < 25^{\circ}$ were measured by a $\theta/2\theta$ scan. Corrections were made for Lorentz and polarization effects. There was no decay during data collection. After averaging of equivalent reflections ($R_{\rm int} = 0.025$) there were 3804 unique relections of which 2584 with $|F^2| > 3\sigma(F^2)$ were used in the refinement, where $\sigma(F^2) = [\sigma^2(I) + (0.04I)^2]^{1/2}/L_{\rm p}$.

The SHELXS-86 program (Patterson method) was used to locate the Sn atom, and difference maps were used to find the remaining non-hydrogen atoms, which were refined by full-matrix least squares with anisotropic factors except for O(2a), O(3a), O(4a), N(a), C(8a), C(10a) and C(11a), which were left isotropic. The hydrogen atoms were omitted. The final parameters were R = 0.074, R' = 0.096, observed reflections = 2584, $w = \sigma(F)^{-2}$. The molecule had two different orientations with occupancies 0.72 and 0.28.

4.2. TpsiSnMeCl₂, 2

Crystal data: $C_{26}H_{36}Cl_2Si_3Sn$, monoclinic, $P2_1/c$, M = 622.4, a = 11.151(5), b = 17.766(6), c = 15.074(7)Å, $\beta = 95.38(3)^\circ$, U = 2972.9 Å³, Z = 4, $D_c = 1.4$ g cm⁻ 3, F(000) = 1272, monochromated Mo- K_{α} radiation, $\lambda = 0.71069$ Å, $\mu = 11.7$ cm⁻¹.

A crystal of dimensions $0.20 \times 0.35 \times 0.20$ mm was used for data collection at 21°C on an Enraf-Nonius CAD-4 diffractometer. A total of 5686 reflections with $h \ k \pm l$ and $2 < \theta < 25^{\circ}$ were measured by a $\theta/2\theta$ scan with scan width $\Delta \theta = (0.8 + 0.35 \tan \theta)^{\circ}$ and a maximum scan time of 1 min. Corrections were made for Lorentz and polarization effects and for absorption using DIFABS (max 1.22, min 0.72). 2846 reflections with $|F^2| > \sigma(F^2)$ were used in the refinement, where $\sigma(F^2) = [\sigma^2(I) + (0.04I)^2]^{1/2}/L_p$.

The heavy atom routines of the SHELX-86 program were used to locate non-hydrogen atoms which were all refined by full-matrix least squares with anisotropic thermal parameters using programs from the Enraf-Nonius SDP package. The Cl and Me groups of the SnMeCl₂ entity showed evidence of disorder, and a refinement of occupancies suggested that the site labelled Cl(2) was in fact 0.64Cl and 0.36C while the site C(26) was 0.36Cl and 0.64C, and appropriate average scattering factors were used. The H atoms of the Tpsi group were fixed at calculated positions with $U_{iso} =$ $1.3U_{eq}$ for the atoms to which they were bonded. The H atoms on C(26) were omitted. The final parameters were R = 0.061, R' = 0.056, s = 1.4, number of variables = 289, number of observed reflections = 2846, $w = \sigma^{-2}(F)$, $\Sigma w(|F_o| - |F_c|)^2$ minimized, $(\Delta/\sigma)_{max} =$ 0.02, $(\Delta \rho)_{\text{max,min}} = 0.54$, -0.46 e Å⁻³

4.3. TpsiSnCl₃ 3

Crystal data: $C_{25}H_{33}Cl_3Si_3Sn$, trigonal $P\overline{3}$, a =14.910(4), c = 11.321(3) Å, U = 2179.6 Å³, Z = 3, $D_c =$ 1.50 g cm⁻³, F(000) = 978. Monochromated Mo- K_{α} radiation, $\lambda = 0.71069$ Å, $\mu = 12.9$ cm⁻¹. Reflections from a crystal $0.2 \times 0.2 \times 0.2$ mm were indexed on the basis of the trigonal cell above; weaker reflections with a different profile could be indexed with a larger cell with the same c axis and a = 25.81 Å. 4032 relections with $h, \pm k, l$ and $2 < \theta < 25^{\circ}$ were measured and 1514 with $|F|^2 > 3\sigma(F^2)$ were used. By direct methods (SHELXS-86) in space group P3 three independent molecules, two ordered and one disordered, were located. The space group was changed to $P\overline{3}$ with one molecule disordered across an inversion centre and the other in a general positon. All the atoms were refined by full matrix least squares with anisotropic temperature factors except for C(1), C(1a), C(3a) and C(8a) which were isotropic. Hydrogen atoms in molecule 1 were at calculated postions (C–H 0.95Å) and $B_{iso} = 1.3B_{eq}$ for the adjacent atom and those in molecule 2 were omitted. Refinement converged at R = 0.067, R' = 0.089.

5. Supplementary data

For all structures, hydrogen atom coordinates, anisotropic thermal parameters, and complete lists of bond lengths and angles have been deposited at the Cambridge Crystallographic Data Centre.

Acknowledgements

We thank the SERC (now EPSRC) for supporting this work and the Governments of Iraq and Saudi Arabia for scholarships to M. Al-Rawi and S.S. Al-Juaid, respectively.

References

- [1] F. Glockling, P. Harriott, W-K. Ng, J. Chem. Res. (1979) (S) 12: (M) 275.
- [2] F. Glockling, W-K. Ng, J. Chem. Res. (1980) (S) 230; (M) 3128.
- [3] F. Glockling, W-K. Ng, J.Chem. Soc. Dalton Trans. (1981) 1101.
- [4] I.V. Borisova, N.N. Zemlyanskii, N.D. Kolosova, Ya.A. Ustynyuk, I.P. Beletskaya, Izv. Akad. Nauk, Ser, Khim. (1979) 2397.
- [5] S.M. Dhaher, C. Eaborn, J.D. Smith, J. Organomet. Chem. 355 (1988) 33.
- [6] S.S. Al-Juaid, S.M. Dhaher, C. Eaborn, P.B. Hitchcock, J.D. Smith, J. Organomet. Chem. 325 (1987) 117.
- [7] S.S. Al-Juaid, M. Al-Rawi, C. Eaborn, P.B. Hitchcock, J.D. Smith, J. Organomet. Chem. 446 (1993) 161.
- [8] A.N. Fenster, E.I. Becker, J. Organomet. Chem. 11 (1968) 549.

- [9] (a) C. Walling, A. Padwa, J. Am. Chem. Soc., 85 (1963) 1593;
 (b) D.R.H. Barton, W.D. Hollis (eds.), Comphrehensive Organic Chemistry, vol. 1, Pergamon Press, Oxford, 1979, p. 877.; (c) B.M. Trost, I. Fleming (eds.), Comphrehensive Organic Synthesis, vol. 7, Pergamon Press, Oxford, 1991, p. 41.
- [10] S.M. Dhaher, C. Eaborn, J.D. Smith, J. Chem. Soc. Chem. Commun. (1987) 1337.
- [11] C. Eaborn, D.E. Reed, J. Chem. Soc. Perkin Trans. 2 (1985) 1687.
- [12] P.G. Harrison, M.J. Begley, K.C. Molloy, J. Organomet. Chem. 186 (1980) 213.
- [13] See [7] and the references therein.
- [14] C.D. Garner, D. Sutton, S.C. Wallwork, J. Chem. Soc. (A) (1967) 1949.
- [15] A.M. Domingos, G.M. Sheldrick, J. Chem. Soc. Dalton. Trans. (1974) 475.
- [16] C. Glidewell, D.C. Liles, Acta Crystallogr. Sect. B 34 (1978) 1693.
- [17] (a) J.A. Zubieta, J.J. Zuckerman, Prog. Inorg. Chem. 24 (1978)
 251; (b) P.T. Greene, R.F. Bryan, J. Chem. Soc. (A) (1971) 2549.
- [18] M.J.S. Gynane, M.F. Lappert, S.J. Miles, A.J. Carty, N.J. Taylor, J. Chem. Soc. Dalton. Trans. (1977) 2009.
- [19] C. Eaborn, P.B. Hitchcock, P.D. Lickiss, J. Organometal. Chem. 269 (1984) 235.
- [20] J.L. Atwood, S.G. Bott, C. Eaborn, M.N.A. El-Kheli, J.D. Smith, J. Organometal. Chem. 294 (1985) 23.
- [21] C. Eaborn, M.N.A. El-Kheli, P.B. Hitchcock, J.D. Smith, J. Chem. Soc. Chem. Commun. (1984) 1673.
- [22] A.G. Avent, S.G. Bott, J.A. Ladd, P.D. Lickiss, A. Pidcock, J. Organomet. Chem. 427 (1992) 9.
- [23] C. Eaborn, P.B. Hitchcock, J.D. Smith, A.C. Sullivan, J. Chem. Soc. Chem. Commun. (1983) 827.
- [24] C. Eaborn, P.B. Hitchcock, J.D. Smith, A.C. Sullivan, J. Chem. Soc. Chem. Commun. (1983) 1390.
- [25] G. Fritz, U. Finke, Z. Anorg. Allg. Chem. 430 (1977) 121.
- [26] S.S. Al-Juaid, S.M. Dhaher, C. Eaborn, P.B. Hitchcock, C.A. McGeary, J.D. Smith, J. Organomet. Chem. 366 (1989) 39.
- [27] A.G. Davies, P.R. Palan, S.C. Vasishtha, Chem. Ind. (Lond.) (1967) 229
- [28] P.J. Smith, R.F.M. White, L. Smith, J. Organomet. Chem. 40 (1972) 341.
- [29] B. Wrackmeyer, Annu. Rep. NMR Spectrosc. 16 (1985) 73.
- [30] H Gilman, O.L. Marrs, S-Y Sim, J. Org. Chem. 27 (1962) 4232.
- [31] G.A. Razuvaev, O.S. D'yachkovskaya, I.K. Grigor'eva, N.E. Tsyganash, Zh. Obshch. Khim. 44 (1974) 573.
- [32] S.M. Dhaher, D.Phil Thesis, University of Sussex, Sussex, UK, 1986.